MTHFR C677T
MTHFR helps our bodies use folate effectively, but certain genetic differences, like C677T and A1298C, can slow it down. If someone has two copies of C677T or a mix of C677T and A1298C, it slows MTHFR even more, making it harder to convert homocysteine. This could lead to higher homocysteine levels, which might increase the risk of heart problems.
MTHFR A1298C
MTHFR helps our bodies use folate effectively, but certain genetic differences, like C677T and A1298C, can slow it down. If someone has two copies of C677T or a mix of C677T and A1298C, it slows MTHFR even more, making it harder to convert homocysteine. This could lead to higher homocysteine levels, which might increase the risk of heart problems.
CBS A13637G - rs2851391
The CBS gene helps turn homocysteine into important substances for our body, like proteins and antioxidants that fight cell damage. Some genetic mutations, like the A13637G variant, can weaken this process, potentially raising homocysteine levels and causing cardiovascular issues.
MTR A2756G
MTR and MTRR use folate and vitamin B12 to produce a crucial substance called methionine. If someone has two identical mutations in MTRR, or mutations in both MTR and MTRR, it can greatly reduce methionine production, potentially leading to higher levels of homocysteine in the blood and raising the risk of conditions like coronary artery disease.
MTRR A66G
MTR and MTRR use folate and vitamin B12 to produce a crucial substance called methionine. If someone has two identical mutations in MTRR, or mutations in both MTR and MTRR, it can greatly reduce methionine production, potentially leading to higher levels of homocysteine in the blood and raising the risk of conditions like coronary artery disease.
MTHFD1 G1958A
MTHFD1 helps convert one form of folate into another form that is critical for making DNA and RNA, as well as for providing methyl groups for important cellular processes like methylation. Mutations in MTHFD1 result in lower levels of active folate, which is a key input for downstream biological pathways.
PEMT M175V rs7946
The PEMT M175V mutation is associated with having lower choline production in the liver. Choline is essential for a neurotransmitter called acetylcholine, which helps send messages through to various organs like the lungs, heart, and brain. If you don't get enough choline, it could affect memory and sleep, as well as how your organs work.
PEMT C744G
The PEMT C744G mutation is associated with having lower choline production in the liver. Choline is essential for a neurotransmitter called acetylcholine, which helps send messages through to various organs like the lungs, heart, and brain. If you don't get enough choline, it could affect memory and sleep, as well as how your organs work.
COMT rs4680 (V158M)
The V158M mutation in COMT can change how quickly your body breaks down dopamine, adrenaline, and noradrenaline which affects mood, thinking, and stress. This contributes to health outcomes including cognitive performance, susceptibility to psychiatric disorders, and stress-related conditions.